Sparsity and Nullity: Paradigm for Analysis Dictionary Learning
نویسندگان
چکیده
Sparsity and Nullity: Paradigm for Analysis Dictionary Learning Report Title Sparse models in dictionary learning have been successfully applied in a wide variety of machine learning and computer vision problems, and have also recently emerged with increasing research interest. Another interesting related problem based on linear equality constraint, namely the sparse null space problem (SNS), first appeared in 1986 and has since inspired results on sparse basis pursuit. In this paper, we investigate the relation between the SNS problem and the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may be utilized to solve dictionary learning problems. Moreover, we propose an efficient algorithm of sparse null space basis pursuit, and extend it to a solution of analysis dictionary learning. Experimental results on numerical synthetic data and real-world data are further presented to validate the performance of our method. SPARSITY AND NULLITY: PARAGIDMS FOR ANALYSIS DICTIONARY LEARNING XIAO BIAN, HAMID KRIM , ALEX BRONSTEIN , AND LIYI DAI Abstract. Sparse models in dictionary learning have been successfully applied in a wide variety of machine learning and computer vision problems, and have also recently emerged with increasing research interest. Another interesting related problem based on linear equality constraint, namely the sparse null space problem (SNS), first appeared in 1986 and has since inspired results on sparse basis pursuit. In this paper, we investigate the relation between the SNS problem and the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may be utilized to solve dictionary learning problems. Moreover, we propose an efficient algorithm of sparse null space basis pursuit, and extend it to a solution of analysis dictionary learning. Experimental results on numerical synthetic data and real-world data are further presented to validate the performance of our method. Sparse models in dictionary learning have been successfully applied in a wide variety of machine learning and computer vision problems, and have also recently emerged with increasing research interest. Another interesting related problem based on linear equality constraint, namely the sparse null space problem (SNS), first appeared in 1986 and has since inspired results on sparse basis pursuit. In this paper, we investigate the relation between the SNS problem and the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may be utilized to solve dictionary learning problems. Moreover, we propose an efficient algorithm of sparse null space basis pursuit, and extend it to a solution of analysis dictionary learning. Experimental results on numerical synthetic data and real-world data are further presented to validate the performance of our method.
منابع مشابه
Speech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملSparsity and Nullity: Paradigms for Analysis Dictionary Learning
Sparse models in dictionary learning have been successfully applied in a wide variety of machine learning and computer vision problems, and as a result have recently attracted increased research interest. Another interesting related problem based on linear equality constraints, namely the sparse null space (SNS) problem, first appeared in 1986 and has since inspired results on sparse basis purs...
متن کاملLearning a collaborative multiscale dictionary based on robust empirical mode decomposition
Abstract. Dictionary learning is a challenge topic in many image processing areas. The basic goal is to learn a sparse representation from an overcomplete basis set. Due to combining the advantages of generic multiscale representations with learning based adaptivity, multiscale dictionary representation approaches have the power in capturing structural characteristics of natural images. However...
متن کاملLocal stability and robustness of sparse dictionary learning in the presence of noise
A popular approach within the signal processing and machine learning communities consists in modelling signals as sparse linear combinations of atoms selected from a learned dictionary. While this paradigm has led to numerous empirical successes in various fields ranging from image to audio processing, there have only been a few theoretical arguments supporting these evidences. In particular, s...
متن کاملMR Image Reconstruction from Undersampled k-Space with Bayesian Dictionary Learning
We develop an algorithm for reconstructing magnetic resonance images (MRI) from highly undersampled k-space data. While existing methods focus on either image-level or patch-level sparse regularization strategies, we present a regularization framework that uses both image and patch-level sparsity constraints. The proposed regularization enforces image-level sparsity in terms of spatial finite d...
متن کامل